运用数据挖掘技术提升客户满意度(2)

来源:网络(转载) 作者:王宇峰 发表于:2012-05-16 15:20  点击:
【关健词】客户满意度;数据挖掘;客户满意度数据分析系统
计划建议模型输出的结果是站在分析满意度变化的角度,帮助企业观察在每个区域、每项工作环节上应投放的工作侧重,以及采用不同的工作侧重会对满意度产生什么样的影响。 3)增强主题分析功能 增加满意度短板探测功能

  计划建议模型输出的结果是站在分析满意度变化的角度,帮助企业观察在每个区域、每项工作环节上应投放的工作侧重,以及采用不同的工作侧重会对满意度产生什么样的影响。
  3)增强主题分析功能
  增加满意度短板探测功能。
  提供满意度短板探测功能,可以按分项指标分值范围等参数预设多种探测条件,系统可自动根据这些预设参数,在历年的数据中检索并输出符合条件的样本数据,并提供对筛选出来的数据进行再分析的功能。
  增加数据分析报告的输出功能。
  提供某些报告输出功能,可按照M公司提供的某些暨定的模板格式,可以按页、按册、按批量自动输出Excel、PDF等格式的数据分析报告,其中,批量输出方式可以自动按经销商和按区域批量输出数据分析报告,节省人工处理报告的工作量。
  增加分析区域预设功能。
  提供分析区域的预设功能,使操作人员可根据需要从当年的调研数据中抽选出与JD Power调研范围相同的城市作为满意度分析的区域,并按照这种区域结构对客户满意度数据进行观察和对比分析。
  3 结论
  建立并改进满意度数据库查询分析系统,对客户信息数据进行收集及处理。收集客户信息及反馈,对于高客户满意度来说是尤为重要的。只有理解了客户的观点,并从客户视角来研究产品及服务,才能从更深的层面来提升产品及服务。对客户信息数据要进行处理,发现其中有关客户满意度的模式,再调整相应的有效策略及形成决策支持。本文期望通过对M公司满意度数据查询分析系统的研究,能给汽车行业客户满意度的提升,提供一些帮助并做出一定的贡献。
  数据挖掘作为在海量客户信息中发现客户行为模式并挖掘影响客户满意度关键指标的一种现代技术,为企业制定和调整经营决策起到了有效的指导性作用。随着数据挖掘技术的不断成熟,“以客户为导向”的经营决策也必将体现出其更大的价值。
  
  参考文献
  [1]刘菲.基于数据挖掘技术的客户满意度的提升.华章,2011(31).
  [2]陈京民.数据仓库与数据挖掘技术[M].北京:电子工业出版社,2006.
  [3]朱爱群.客户关系管理与数据挖掘[M].中国财政经济出版社,2001.
  [4]李玲,赵宏霞等.用数据挖掘提高客户满意度.辽宁:技术经济,2004(10).
 

(责任编辑:南粤论文中心)转贴于南粤论文中心: http://www.nylw.net(南粤论文中心__代写代发论文_毕业论文带写_广州职称论文代发_广州论文网)
顶一下
(0)
0%
踩一下
(0)
0%


版权声明:因本文均来自于网络,如果有版权方面侵犯,请及时联系本站删除.