Tu(t)=10H(t,s)-1(10H1(s,)w()f(,u(),u())d)ds 10e(s)ds-12(101e()w()d)k2b=b。 故(Tu(t))=min0t1Tu(t)b。 (C2) 当‖u‖a时,由条件(III)及
Tu(t)=∫10H(t,s)-1(∫10H1(s,τ)w(τ)f(τ,u(τ),u′(τ))dτ)ds≥
ρ∫10e(s)dsψ-12(∫10ρ1e(τ)w(τ)dτ)k2b=b。
故α(Tu(t))=min0≤t≤1Tu(t)≥b。
(C2) 当‖u‖≤a时,由条件(III)及式(3)~式(4)可知 ‖Tu‖≤a。
(C3)当u∈P(α,b,c)且‖Tu‖>d时,由条件(II)可知α(Tu)>b。
综上所述, 引理1的三个条件都成立, 式(1)至少存在三个对称正解u1,u2和u3,且满足
‖u1‖ 由于该定理给出了式(1)至少存在三个对称正解的充分条件, 所以丰富了文献[5]的结论。
参考文献:
[1] LEGGET R W, WILLIAMS L R. Multiple positive fixed points of nonlinear operators on ordered Banach spaces [J]. Indiana university Math. J, 1979, 28: 673-688.
[2] C PGUPTA. A generalized multi-point boundary value problem for second order ordinary differential equations [J]. Appl. Math. Comput. 1998,89 :133–146.
[3] R IAVERY, JHENDERSON. Three symmetric positive solutions for a second-order boundary value problem [J]. Appl. Math. Lett. 2000,13: 1-7.
[4] J RGRAEF, LKONG. Positive solutions for third order semipositone boundary value problems [J]. Appl. Math. Lett. 2009,22: 1154-1160.
[5] Y LUO, Z LUO. Symmetric positive solutions for nonlinear boundary value problems with -Laplacian operator [J]. Appl.Math.Lett. 2010,23:657-664 .doi: 10.1016/j.aml.2010.01.027.
[6] X ZHANG,M FENG,WGE. Symmetric positive solutions for p-Laplacian fourth-order differential equations with integral boundary conditions [J]. J. Comput. Appl. Math. 2008,222:561-573.
[7] LINGJU KONG. Second order singular boundary value problems with integral boundary conditions [J]. Nonlinear Anal.2010,72: 2 628-2 638.
[8] DJI, WGE. Multiple positive solutions for some p-Laplacian boundary value problems [J]. Appl. Math. Comput. 2007,187(2):1 315-1 325.
[9] B FLIU, JHZHANG. The existence of positive solutions for some nonlinear equation systems [J]. J. Math. Anal. Appl. 2006,324:970-981.
[10] H WANG. On the number of positive solutions of nonlinear systems [J]. J. Math. Anal. Appl. 2003,281: 287-306.
(责任编辑:南欧)转贴于南粤论文中心: http://www.nylw.net(南粤论文中心__代写代发论文_毕业论文带写_广州职称论文代发_广州论文网)
顶一下
(0)
0%
踩一下
(0)
0%
版权声明:因本文均来自于网络,如果有版权方面侵犯,请及时联系本站删除.